

Training Department

OpenFOAM Workshops

From an introductory to advanced level

Level 1: Introductory (for beginners)

Level 2: Lagrangian Approach

Level 3: Geometry and Mesh Generation

Level 4: Turbulence Modelling

Level 5: Advanced Coding

OpenFOAM workshop; L1 (introductory)

Duration: 6 days (24 hours)

- Introduction
 - Pros and cones of OpenFOAM
 - Why we are using CFD
 - Complexity of PDE's
 - A brief introduction on CFD
 - General structure of OpenFOAM
 - First example: Cavity!
- Introduction to Geometry and Mesh generation in OpenFOAM
 - Mesh Types
 - Mesh Quality
 - Mesh Independence
 - Different ways to create mesh in OpenFOAM
 - blockMesh
 - snappyHexMesh

OpenFOAM workshop; L1 (introductory)

Duration: 6 days (24 hours) - Continue

- Essential options
 - controlDict
 - Simple Initial Condition
 - Simple Boundary Condition
 - damBreak
 - setFields
 - Professional Boundary Conditioners
 - swak4Foam
 - Turbulence
 - Multiphase
 - Non-Newtonian
 - Porous Media
 - Introduction to FVM Schemes
 - Parallel Processing
- Post Processing

OpenFOAM workshop; L1 (introductory)

Duration: 6 days (24 hours) - Continue

- Post Processing (with Paraview)
 - Streamline
 - Clip
 - Glyph
 - Threshold
 - Contour
 - Integrate Variable
 - Post processing functions
 - Calculator
 - LES Quality Check

Lagrangian Particle Tracking; L2

Duration: 3 days (12 hours)

- Introduction
 - Different Types of flows
 - Forces on Particles
 - Governing Equations
 - Types of coupling
- LPT in OpenFOAM
 - Introduction on simple case setup in OpenFOAM
 - Run the case with pimpleParcelFoam
 - Needed inputs for LPT with pimpleParcelFoam
 - Different solvers for LPT in OpenFOAM
 - Some examples
 - Modification of postProcessing tools

Geometry and Mesh generation; L3

Duration: 6 days (18 hours)

- Introduction
- Mesh Quality
 - Structured Vs Unstructured Mesh
 - Orthogonality
 - Skewness
 - Aspect Ratio
 - Smoothness
- blockMesh
- Creating Geometry in Catia
- Mesh generation with 3-matic and HyperMesh
- snappyHexMesh
- SALOME
 - structured mesh
 - unstructured mesh without boundary layer
 - Unstructured mesh with boundary layer
 - Coupling between SALOME and snappyHexMesh

Geometry and Mesh generation; L3

Duration: 6 days (18 hours)-continue

- ICEM
 - Structured Vs Unstructured Mesh
 - Geometry Creation
 - ICEM Meshing Process
 - 2D Hex. Mesh
 - Mesh Projection
 - O-Grid Block
 - 3D Hex. Mesh

Turbulence Modeling In OpenFOAM; L4

Duration: 6 days (18 hours)

- Introduction
 - The oldest unsolved problem in physics
 - Some examples
 - Transition from laminar to turbulent flow
 - Turbulent flow features
 - Why turbulent flow is challenging?
- All the turbulence models in OpenFOAM (Overview)
 - Laminar
 - RANS
 - URANS
 - SAS
 - DES
 - LES
 - DNS
- RANS Models in detail
 - Spalart-Allmaras
 - Standard k-epsilon
 - kOmegaSST
 - SSG
 - kOmega
 - LienLeschziner

Turbulence Modeling In OpenFOAM; L4

Duration: 6 days (18 hours) - continue

- Large-Eddy Simulation of Turbulent Flows
 - Filtering Operation
 - Filtered Equations
 - SGS Modeling
 - Static (standard) Smagorinsky
 - Dynamic Smagorinsky
 - Dynamic Lagrangian
 - Dynamic Bardina
 - WALE
 - Dynamic k-Equation
- RANS test case (pitzDaily)
 - Mesh Generation
 - How to choose turbulence model
 - Initial and Boundary Conditions
 - Turbulence Statistics
 - Post Processing

Turbulence Modeling In OpenFOAM; L4

Duration: 6 days (18 hours) - continue

- LES test case (Channel395)
 - Mesh Generation
 - Initial and Boundary Conditions
 - LES Quality Check
 - Post Processing
- From Laminar to turbulent in an Example
 - How to setup s k-epsilon model
 - Change a model to another one
 - Detailed description of wall functions
 - Using MapFields
 - Initialization of LES modeling with kepsilon

Advanced Coding In OpenFOAM; L5

Duration: 6 days (18 hours)

- Introduction (A review on OpenFOAM structure)
- Basics Of C++
 - Basic IO!
 - Data Types
 - Scope of Variables
 - If, else, else if
 - While, do while
 - For
 - Functions
 - Arrays
 - Pointers
 - Namespace
 - Typedef
 - Class
 - Templates
 - Shared Libs.

Advanced Coding In OpenFOAM; L5

Duration: 6 days (18 hours) -continue

- C++ in OpenFOAM
 - Basic Tensor Classes
 - Algebraic Tensor Operations
 - Dimensional Units in OpenFOAM
 - List and Fields
 - polyMesh and fvMesh
 - geometricFields
 - volFields
 - forAll
 - Equation Discretization
 - Wmake
 - Extra C++
- New BC (Advanced Boundary Conditions)
- New IC1
- New IC2.
- Adding a new Integration Scheme.
- New post-Processing Function
- Creating New Multiphase Solver

https://SimAltum.com support@simaltum.com (807) 700-5504